Abstract

We have fabricated an unconventional uni-leg structure thermoelectric generator (TEG) element using quad thermoelectric (TE) chips of Sb-doped n-Mg2Si, which were prepared by a plasma-activated sintering process. The power curve characteristics, the effect of aging up to 500 h, and the thermal gradients at several points on the module were investigated. The observed maximum output power with the heat source at 975 K and the heat sink at 345 K was 341 mW, from which the ΔT for the TE chip was calculated to be about 333 K. In aging testing in air ambient, a remarkable feature of the results was that there was no notable change from the initial resistance of the TEG module for as long as 500 h. The thermal distribution for the fabricated uni-leg TEG element was analyzed by finite-element modeling using ANSYS software. To tune the calculation parameters of ANSYS, such as the thermal conductance properties of the corresponding coupled materials in the module, precise measurements of the temperature at various probe points on the module were made. Then, meticulous verification between the measured temperature values and the results calculated by ANSYS was carried out to optimize the parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.