Abstract
Abstract Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.