Abstract
The interaction between advanced age and increased susceptibility to ischemic insult is well documented. Age-related increases in coronary vascular resistance, in part due to impaired dilator responses, have been reported. Our aim was to determine the role of endothelin-1 (ET-1) on enhanced constrictor responses in aged coronary arteries (CAs) and whether protein kinase C (PKC) signaling mechanisms impact ET-1 responses. Vasoreactivity was assessed in CAs isolated from aged (24 months; n=16) and adult (4 months; n=21) male F344 rats following ET-1 (10(-10)-10(-8)) with and without specific ETA/ETB receptor antagonists (BQ-123, 1 microM; BQ-788, 30 nM) or the PKC inhibitor bisindolylmaleimide (Bis; 10(-6) M). Constrictor responses to KCl (80 mM) were also measured and voltage-gated Ca2+ channel (VGCC) determined in isolated coronary smooth muscle cells. Dilator responses to acetylcholine (ACH) and sodium nitroprusside (SNP) were assessed. Passive diameter was greater (357+/-19 vs. 309+/-9; p<0.02) while spontaneous tone was similar in 24 months vs. 4 months. ET-1 resulted in greater constriction in 24 months vs. 4 months (79% vs. 67%; p<0.01). Group differences persisted following selective ETB inhibition with BQ-788 (p<0.02), while BQ-123 abolished contractile responses to ET-1. Importantly, inhibition of ET-1 constriction by Bis occurred in 24 months but not 4 months (p<0.01). Constrictor responses to KCl and peak VGCC current density were similar in 24 months vs. 4 months (48% vs. 50%). No age-related differences were observed in ACH- or SNP-mediated dilation. Western blotting revealed increases in Ca2+-sensitive PKCalpha, -betaI, and -betaII levels with age, while eNOS and ETA receptor protein levels were unchanged. Aberrant ETA constrictor responses and directional changes in PKC are likely to contribute to coronary vascular pathology with advanced age.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.