Abstract
Natural manganese oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the quality of sediments via their ability to degrade and sequester contaminants. These oxides are believed to form dominantly via oxidation of Mn(II) by marine and freshwater bacteria and have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic manganese oxides produced by spores of the marine Bacillus sp., strain SG-1 in sea water as a function of reaction time under fully in-situ conditions. The primary biogenic product is a nanocrystalline solid with an oxidation state and layered phyllomanganate local structure similar to that in δ-MnO2. XRD data show the biooxides to have a phyllomanganate 10 Å basal plane spacing, suggesting the interlayer is hydrated and contains calcium. Fits to EXAFS spectra suggest the octahedral layers of the biooxides to be relatively flat (out-of-plane bend <10°) and to have relatively low octahedral layer Mn site vacancies (12 to 14%). These results suggest that aqueous Ca2+ is inserted into the biogenic oxide structure after completion of the enzymatic oxidation process. The biooxides observed in this study may be the most abundant manganese oxide phase suspended in the oxic and sub-oxic zones of the oceanic water column.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.