Abstract
Finding exact solutions for Riemann–Liouville (RL) fractional equations is very difficult. We propose a general method of separation of variables to study the problem. We obtain several general results and, as applications, we give nontrivial exact solutions for some typical RL fractional equations such as the fractional Kadomtsev–Petviashvili equation and the fractional Langmuir chain equation. In particular, we obtain non-power functions solutions for a kind of RL time-fractional reaction–diffusion equation. In addition, we find that the separation of variables method is more suited to deal with high-dimensional nonlinear RL fractional equations because we have more freedom to choose undetermined functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.