Abstract
We construct infinitely many new exactly solvable local commuting projector lattice Hamiltonian models for general bosonic beyond group cohomology invertible topological phases of order two and four in any spacetime dimensions, whose boundaries are characterized by gravitational anomalies. Examples include the beyond group cohomology invertible phase without symmetry in (4+1)D that has an anomalous boundary \mathbb{Z}_2ℤ2 topological order with fermionic particle and fermionic loop excitations that have mutual \piπ statistics. We argue that this construction gives a new non-trivial quantum cellular automaton (QCA) in (4+1)D of order two. We also present an explicit construction of gapped symmetric boundary state for the bosonic beyond group cohomology invertible phase with unitary \mathbb{Z}_2ℤ2 symmetry in (4+1)D. We discuss new quantum phase transitions protected by different invertible phases across the transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.