Abstract
The Hamiltonian of the N-particle Calogero model can be expressed in terms of generators of a Lie algebra for a definite class of representations. Maintaining this Lie algebra, its representations, and the flatness of the Riemannian metric belonging to the second order differential operator, the set of all possible quadratic Lie algebra forms is investigated. For N = 3 and N = 4 such forms are constructed explicitly and shown to correspond to exactly solvable Sutherland models. The results can be carried over easily to all N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.