Abstract

Models of photoconductors used in xerography are based on donors with a Gaussian energy distribution whose width is inferred from the zero-field mobility, μ(T). Exact mean dwell times for Marcus, Miller-Abrahams and symmetric rates are obtained at zero field for lattices with energetic, positional and orientational disorder. Monte Carlo simulations of μ(T) and hopping rates bring out the role of disorder-induced steps. Evidence for such steps in molecularly doped polymer comes from the concentration dependence of μ(T). Transport involves fast, repetitive steps with small displacement and geometrical disorder increases the T dependence of μ(T). Present analyses of μ(T) overestimate energetic disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.