Abstract

The goal of the present contribution is twofold: (i) To compute exact wave functions for a muon bound in the extended Coulomb potential of a muonic atom by solving the Dirac equation within the context of genetic algorithms and neural network techniques using experimental finite-size charge-densities for the attracting nucleus. (ii) To calculate partial and total rates of the ordinary muon capture in various muonic atoms. In contrast to the majority of previous realistic calculations for μ−-capture rates, in our present work we utilize the above mentioned exact wave functions for a muon orbiting at the Is and 2p atomic orbits. The required many-body nuclear wave functions are obtained by diagonalizing the eigenvalue problem of the quasi-particle random phase approximation (QRPA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.