Abstract

In this paper, we obtain exact traveling wave solutions of a variety of Boussinesq-like equations by using two distinct methods with symbolic computation. The Boussinesq equations play an important role in physical applications, such as in nonlinear lattice waves, acoustic waves, iron sound waves in a plasma, and vibrations in a nonlinear string. More precisely, the modified tanh-coth method is employed to obtain single soliton solutions, and the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions. Further, it is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions. The employed approaches are quite efficient for the determination of the solutions, and are practically well suited for solving nonlinear evolution equations arising in physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.