Abstract

Lattice systems with one species diffusion–reaction processes under local complete exclusion rules are studied analytically starting from the usual master equations with discrete variables and their corresponding representation in a Fock space. On this basis, a formulation of the transition probability as a Grassmann path integral is derived in a straightforward manner. It will be demonstrated that this Grassmann path integral is equivalent to a set of Ito stochastic differential equations. Averages of arbitrary variables and correlation functions of the underlying diffusion–reaction system can be expressed as weighted averages over all solutions of the system of stochastic differential equations. Furthermore, these differential equations are equivalent to a Fokker–Planck equation describing the probability distribution of the actual Ito solutions. This probability distribution depends on continuous variables in contrast to the original master equation, and their stochastic dynamics may be interpreted as a substitute process which is completely equivalent to the original lattice dynamics. Especially, averages and correlation functions of the continuous variables are connected to the corresponding lattice quantities by simple relations. Although the substitute process for diffusion–reaction systems with exclusion rules has some similarities to the well-known substitute process for the same system without exclusion rules, there exists a set of remarkable differences. The given approach is not only valid for the discussed single-species processes. We give sufficient arguments to show that arbitrary combinations of unimolecular and bimolecular lattice reactions under complete local exclusions may be described in terms of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.