Abstract

We study the statistics of increments in record values in a time series {x_{0}=0,x_{1},x_{2},…,x_{n}} generated by the positions of a random walk (discrete time, continuous space) of duration n steps. For arbitrary jump length distribution, including Lévy flights, we show that the distribution of the record increment becomes stationary, i.e., independent of n for large n, and compute it explicitly for a wide class of jump distributions. In addition, we compute exactly the probability Q(n) that the record increments decrease monotonically up to step n. Remarkably, Q(n) is universal (i.e., independent of the jump distribution) for each n, decaying as Q(n)∼A/sqrt[n] for large n, with a universal amplitude A=e/sqrt[π]=1.53362….

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.