Abstract
For a two-dimensional scalar discrete ϕ4 model we obtain several exact static solutions in the form of the Jacobi elliptic functions (JEF) with arbitrary shift along the lattice. The Quispel–Roberts–Thompson-type quadratic maps are identified for the considered two-dimensional model by using a JEF solution. We also show that many of the static solutions can be constructed iteratively from these quadratic maps by starting from an admissible initial value. The kink solution, having the form of tanh , is numerically demonstrated to be generically stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.