Abstract
In this paper, we consider the nonlinear space–time fractional form of Cahn–Allen equation (FCAE) with beta and M-truncated derivatives. Cahn–Allen equation (CAE) is commonly used in many problems of physics and engineering, such as, solidification problems, phase separation in iron alloys and others. We apply the improved [Formula: see text]-expansion method (ITEM). We obtain four types of traveling wave solutions, including, trigonometric, hyperbolic, rational and exponential function solutions. We demonstrate some of the extracted solutions using definitions of the beta (BD) and M-truncated derivatives (MTD) to understand their dynamical behavior. We observe the fractional effects of the aforementioned derivatives on the related physical phenomena up to possible extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.