Abstract
This paper is devoted to analyzing the physical structures of nonlinear dispersive variants of the Benjamin–Bona–Mahony equation. It is found that these generalized forms give rise to compactons solutions: solitons with the absence of infinite tails, solitons: nonlinear localized waves of infinite support, solitary patterns solutions having infinite slopes or cusps, and plane periodic solutions. It is also found that the qualitative change in the physical structure of solutions depends strongly on whether the exponents of the wave function u( x, t) whether it is positive or negative, and on the speed c of the traveling wave as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.