Abstract
Mathematical biology models can simulate cell behavior scenarios, specifically for tumor proliferation. In this paper, we study a continuous model describing the evolution of high-grade gliomas from the point of view of the theory of symmetry reductions in partial differential equations (PDEs). Malignant gliomas are the most frequent and deadly type of brain tumor. Over the last few years, complex mathematical models of cancerous growths have been developed increasingly, especially on solid tumors, in which growth primarily comes from abnormal cellular proliferation. The presented PDE system includes two different cellular phenotypes, depending on their oxygenation level. Furthermore, this mathematical model assumes that both phenotypes differ in migration and proliferation rates. Specifically, it includes the possibility of hypoxic cells diffusing into well-oxygenated areas of a tumor. Our main findings are obtained through the classical symmetries admitted by the proposed system, and transformation groups are used to reduce the PDE system to ordinary differential equations. By these means, we provide not only exact solutions but also capture a 3-dimensional representation of the biological phenomenon. The simulations provided show the relationship between normoxic and hypoxic phenotypes in high-grade gliomas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.