Abstract

Exact solutions of the time-dependent three-dimensional nonlinear vorticity equation for Euler flows with spherical geometry are provided. The velocity solution is the sum of a multipolar oscillatory function and a rigid cylindrical motion with swirl. The multipolar oscillation is a velocity mode whose radial and angular dependencies are given by the spherical Bessel functions and vector spherical harmonics, respectively. The local frequency of the velocity oscillations equals the angular speed of the rigid flow times the angular azimuthal wavenumber of the oscillating flow. The unsteady motion corresponds to inertial oscillations in multipolar flows with spatial azimuthal waves (non-vanishing azimuthal wavenumber) in the presence of a background flow with constant axial vorticity. In these nonlinear solutions, the curl of the Lamb vector has a linear dependence with the oscillation velocity, a property that makes it possible for the oscillating motion to satisfy different linear wave equations. Based on these inviscid time-dependent velocity modes, new exact solutions to the time-dependent Navier–Stokes equation are also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call