Abstract
The second-grade fluid equations describe the motion of relaxing fluids such as aqueous solutions of polymers. The existence and uniqueness of solutions to the initial–boundary value problems for these equations were studied by D. Cioranescu, V. Girault, C. Le Roux, A. Tani, G. P. Galdi, and others. However, their studies do not contain information about the qualitative properties of solutions of these equations. Such information can be obtained by analyzing their exact solutions, which is the main goal of this work. We study layered flows and a model problem with a free boundary, construct an analog of T. Kármán’s solution, which describes the stationary motion of a second-grade fluid in a half-space induced by the rotation of the plane bounding it, and propose a generalization of V. A. Steklov’s solution of the problem on unsteady helical flows of a Newtonian fluid to the case of a second-grade fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.