Abstract

Based on algebraic dynamics, we present an algorithm to obtain exact solutions of the Schrödinger equation of non-autonomous quantum systems with Hamiltonian expressed in quadratic function of creation and annihilation operators of bosons. The Hamiltonian is treated as a linear function of generators of a symplectic group. Similar to the canonical transformation of classical dynamics, we employ a set of gauge transformations to gradually transform the Hamiltonian to a linear function of Cartan operators. The exact solutions are obtained by inverse gauge transformations. When the system is autonomous, this algorithm can obtain the normal mode of the Hamiltonian, as well as the eigenstates and eigenvalues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.