Abstract
AbstractThe present study is aimed to analyze the unsteady micropolar nanofluid flow passing over an oscillating infinite vertical plate. The flow is affected by thermal radiation and Newtonian heating. Single‐walled carbon nanotubes (SWCNTs) are added to enrich the thermal properties of the micropolar fluid. Kerosene is taken as the base liquid to enhance heat transfer. By using dimensional analysis, the governing equations for temperature, velocity, and microrotation are reduced to dimensionless form and after that, these equations have been solved by applying Laplace transform method to get the exact solutions. Finally, we have presented the effects of material and flow parameters and illustrated graphically by the Mathcad software. We found that microrotation, temperature, and velocity are decreasing functions of Prandtl number but have shown increasing behavior for Grashof number. Furthermore, we found that SWCNTs‐water‐based nanofluid has a comparatively higher heat transfer rate than SWCNTs‐kerosene and SWCNTs‐engine oil‐based nanofluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.