Abstract
We demonstrate how the presence of continuous weak symmetry can be used to analytically diagonalize the Liouvillian of a class of Markovian dissipative systems with strong interactions or nonlinearity. This enables an exact description of the full dynamics and dissipative spectrum. Our method can be viewed as implementing an exact, sector-dependent mean-field decoupling, or alternatively, as a kind of quantum-to-classical mapping. We focus on two canonical examples: a nonlinear bosonic mode subject to incoherent loss and pumping, and an inhomogeneous quantum Ising model with arbitrary connectivity and local dissipation. In both cases, we calculate and analyze the full dissipation spectrum. Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.