Abstract

Within a framework of the three-dimensional (3D) piezoelectricity, we present asymptotic formulations of functionally graded (FG) piezoelectric cylindrical shells under cylindrical bending type of electromechanical loads using the method of perturbation. Without loss of generality, the material properties are regarded to be heterogeneous through the thickness coordinate. Afterwards, they are further specified to be constants in single-layer homogeneous shells and to obey an identical exponent-law in FG shells. The transverse normal load and normal electric displacement (or electric potential) are, respectively, applied on the lateral surfaces of the shells. The cylindrical shells are considered to be fully simple supports at the edges in the circumferential direction and with a large value of length in the axial direction. The present asymptotic formulations are applied to several benchmark problems. The coupled electro-elastic effect on the structural behavior of FG piezoelectric shells is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.