Abstract

In this paper, we explicitly characterize a class of solutions to the first order quasilinear system of partial differential equations (PDEs), governing one dimensional unsteady planar and radially symmetric flows of an adiabatic gas involving shock waves. For this, Lie group analysis is used to identify a finite number of generators that leave the given system of PDEs invariant. Out of these generators, two commuting generators are constructed involving some arbitrary constants. With the help of canonical variables associated with these two generators, the assigned system of PDEs is reduced to an autonomous system, whose simple solutions provide non trivial solutions of the original system. It is interesting to remark that one of the special solutions obtained here, using this approach, is precisely the blast wave solution known in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.