Abstract

Unsteady flow of an incompressible generalized Maxwell fluid between two coaxial circular cylinders is studied by means of the Laplace and finite Hankel transforms. The motion of the fluid is produced by the rotation of cylinders around their common axis. The solutions that have been obtained, written in integral and series form in terms of the generalized G a, b, c (·, t)-functions, are presented as a sum of the Newtonian solutions and the corresponding non-Newtonian contributions. They satisfy all imposed initial and boundary conditions and for λ → 0 reduce to the solutions corresponding to the Newtonian fluids performing the same solution. Furthermore, the corresponding solutions for ordinary Maxwell fluids are also obtained for β = 1. Finally, in order to reveal some relevant physical aspects of the obtained results, the diagrams of the velocity field ω( r, t) have been depicted against r and t for different values of the material and fractional parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.