Abstract

AbstractThe Poiseuille flow of a generalized Maxwell fluid is discussed. The velocity field and shear stress corresponding to the flow in an infinite circular cylinder are obtained by means of the Laplace and Hankel transforms. The motion is caused by the infinite cylinder which is under the action of a longitudinal time-dependent shear stress. Both solutions are obtained in the form of infinite series. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as limiting cases. Finally, the influence of the material and fractional parameters on the fluid motion is brought to light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.