Abstract

In this paper, a suitable transformation and a so-called Exp-function method are used to obtain different types of exact solutions for the generalized Klein–Gordon equation. These exact solutions are in full agreement with the previous results obtained in Refs. [Sirendaoreji, Auxiliary equation method and new solutions of Klein–Gordon equations, Chaos, Solitons & Fractals 31 (4) (2007) 943–950; Huiqun Zhang, Extended Jacobi elliptic function expansion method and its applications, Communications in Nonlinear Science and Numerical Simulation, 12 (5) (2007) 627–635]. One of these exact solutions is compared with the approximate solutions obtained by the modified decomposition method. Accurate numerical results for a wider range of time are obtained after using different types of ADM-Padè approximation. Our results show that the Exp-function method is very effective in finding exact solutions for the problem considered while the modified decomposition method is very powerful in finding numerical solutions with good accuracy for nonlinear PDE without any need for a transformation or perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.