Abstract
A one-parameter family of exact solutions for the deformations of two-dimensional bubbles in a corner flow of an ideal liquid is obtained. The solutions correspond to the special case where the pressure inside the bubble equals the stagnation pressure. The parameter of the model is the corner angle. The solution family includes classical McLeod’s solution which corresponds to the corner of angle π. For the particular case of a right-angled corner, the solution describes the straining flow past a bubble. In view of the known analogy between the distributions of a planar electric field and the velocity field for a two-dimensional potential flow, our solutions give equilibrium configurations of the surface of a conducting liquid in an external electric field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.