Abstract
Abstract We present exact analytical results for bright and dark solitons in a type of one-dimensional spatially inhomogeneous nonlinearity. We show that the competition between a homogeneous self-defocusing (SDF) nonlinearity and a localized self-focusing (SF) nonlinearity supports stable fundamental bright solitons. For a specific choice of the nonlinear parameters, exact analytical solutions for fundamental bright solitons have been obtained. By applying both variational approximation and Vakhitov-Kolokolov stability criterion, it is found that exact fundamental bright solitons are stable. Our analytical results are also confirmed numerically. Additionally, we show that a homogeneous SF nonlinearity modulated by a localized SF nonlinearity allows the existence of exact dark solitons, for certain special cases of nonlinear parameters. By making use of linear stability analysis and direct numerical simulation, it is found that these exact dark solitons are linearly unstable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.