Abstract

Cosmological models with time-dependent [Formula: see text] (read as [Formula: see text]) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of [Formula: see text] models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call