Abstract
AbstractComparison of numerically computed solutions to exact (analytical) time-dependent solutions, when possible, is superior to intercomparison as a technique for verification of numerical models. At least two sources of such exact solutions exist for the isothermal shallow ice-sheet equation: similarity solutions and solutions with ‘compensatory accumulation’. In this paper, we derive new similarity solutions with non-zero accumulation. We also derive exact solutions with (i) sinusoidal-in-time accumulation and (ii) basal sliding. A specific test suite based on these solutions is proposed and used to verify a standard explicit finite-difference method. This numerical scheme is shown to reliably track the position of a moving margin while being characterized by relatively large thickness errors near the margin. The difficulty of approximating the margin essentially explains the rate of global convergence of the numerical method. A transformed version of the ice-sheet equation eliminates the singularity of the margin shape and greatly accelerates the convergence. We also use an exact solution to verify an often-used numerical approximation for basal sliding and we discuss improvements of existing benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.