Abstract

AbstractA linear growth-diffusion equation is studied in a time-dependent interval whose location and length both vary. We prove conditions on the boundary motion for which the solution can be found in exact form and derive the explicit expression in each case. Next, we prove the precise behaviour near the boundary in a ‘critical’ case: when the endpoints of the interval move in such a way that near the boundary there is neither exponential growth nor decay, but the solution behaves like a power law with respect to time. The proof uses a subsolution based on the Airy function with argument depending on both space and time. Interesting links are observed between this result and Bramson's logarithmic term in the nonlinear FKPP equation on the real line. Each of the main theorems is extended to higher dimensions, with a corresponding result on a ball with a time-dependent radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.