Abstract

In the present paper, an exact solution for the two-dimensional boundary layer viscous flow over a semi-infinite flat plate in the presence of magnetic field is given. Generalized similarity transformations are used to convert the governing boundary layer equations into a third order nonlinear differential equation which is the famous MHD Falkner–Skan equation. This equation contains three flow parameters: the stream-wise pressure gradient (β), the magnetic parameter (M), and the boundary stretch parameter (λ). Closed-form analytical solution is obtained for β=-1 and M=0 in terms of error and exponential functions which is modified to obtain an exact solution for general values of β and M. We also obtain asymptotic analyses of the MHD Falkner–Skan equation in the limit of large η and λ. The results obtained are compared with the direct numerical solution of the full boundary layer equation, and found that results are remarkably in good agreement between the solutions. The derived quantities such as velocity profiles and skin friction coefficient are presented. The physical significance of the flow parameters are also discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.