Abstract

We give an exact quantitative solution for the motion of three vortices of any strength, which Poincaré showed to be integrable. The absolute motion of one vortex is generally biperiodic: in uniformly rotating axes, the motion is periodic. There are two kinds of relative equilibrium configuration: two equilateral triangles and one or three colinear configurations, their stability conditions split the strengths space into three domains in which the sets of trajectories are topologically distinct. According to the values of the strengths and the initial positions, all the possible motions are classified. Two sets of strengths lead to generic motions other than biperiodic. First, when the angular momentum vanishes, besides the biperiodic regime there exists an expansion spiral motion and even a triple collision in a finite time, but the latter motion is nongeneric. Second, when two strengths are opposite, the system also exhibits the elastic diffusion of a vortex doublet by the third vortex. For given values of the invariants, the volume of the phase space of this Hamiltonian system is proportional to the period of the reduced motion, a well known result of the theory of adiabatic invariants. We then formally examine the behaviour of the quantities that Onsager defined only for a large number of interacting vortices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.