Abstract

This paper presents an exact analytical solution to the displacement boundary-value problem of elasticity for a torus. The introduced form of the general solution of elastostatics equations allows to solve exactly a broad class of boundary-value problems in coordinate systems with incomplete separation of variables in the harmonic equation. The original boundary-value problem for a torus is reduced to infinite systems of linear algebraic equations with tridiagonal matrices. An analytical technique for solving systems of diagonal form is developed. Uniqueness of the solutions of vector boundary-value problems involving the generalized Cauchy-Riemann equations is investigated, and it is shown that the obtained solution for the displacement boundary-value problem for a torus is unique due to the specific properties of the suggested general solution. The analogy between problems of elastostatics and steady Stokes flows is demonstrated, and the developed elastic solution is used to solve the Stokes problem for a torus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.