Abstract
In this article, attempts are made to present an exact solution for the fluid flow and heat transfer and also entropy generation analysis of the steady laminar magneto-hydrodynamics (MHD) nanofluid flow induced by a stretching/shrinking sheet with transpiration. This paper is the first contribution to the study of entropy generation for the nanofluid flow via exact solution approach. The governing partial differential equations are transformed into nonlinear coupled ordinary differential equations via appropriate similarity transformations. The current exact solution illustrates very good correlation with those of the previously published studies in the especial cases. The entropy generation equation is derived as a function of the velocity and the temperature gradients. The influences of the different flow physical parameters including the nanoparticle volume fraction parameter, the magnetic parameter, the mass suction/injection parameter, the stretching/shrinking parameter, and the nanoparticle types on the fluid velocity component, the temperature distribution, the skin friction coefficient, the Nusselt number and also the averaged entropy generation number are discussed in details. This study specifies that nanoparticles in the base fluid offer a potential in increasing the convective heat transfer performance of the various liquids. The results show that the copper and the aluminum oxide nanoparticles have the largest and the lowest averaged entropy generation number, respectively, among all the nanoparticles considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.