Abstract

This paper studies a class of nonlinear problems of convective longitudinal fins with temperature-dependent thermal conductivity and heat transfer coefficient. For thermal conductivity and heat transfer coefficient dominated by power-law nonlinearity, the exact temperature distribution is obtained analytically in an implicit form. In particular, the explicit expressions of the fin temperature distribution are derived explicitly for some special cases. An analytical expression for fin efficiency is given as a function of a thermogeometric parameter. The influences of the nonlinearity and the thermogeometric parameter on the temperature and thermal performance are analyzed. The temperature distribution and the fin efficiency exhibit completely different behaviors when the power-law exponent of the heat transfer coefficient is more or less than negative unity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call