Abstract

This paper investigates the peristaltic transport of an incompressible micropolar fluid in an asymmetric channel with heat source/sink and convective boundary conditions. Mathematical formulation is completed in a wave frame of reference. Long wavelength and low Reynolds number approach is adopted. The solutions for velocity, microrotation component, axial pressure gradient, temperature, stream function, and pressure rise over a wavelength are obtained. Velocity and temperature distributions are analyzed for different parameters of interest

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.