Abstract

Analytically, we study the dynamics of ionic waves in a microtubule modeled by a nonlinear resistor, inductor, and capacitor (RLC) transmission line. We show through the application of a reductive perturbation technique that the network can be reduced in the continuum limit to the dissipative nonlinear Schrödinger equation. The processes of the modulational instability are studied and, motivated with a solitary wave type of solution to the nonlinear Schrödinger (NLS) equation, we use the direct method and the Weierstrass's elliptic function method to present classes of solitary wavelike solutions to the dissipative NLS equation of the network. The results suggest that microtubules are the biological structures where short-duration nonlinear waves called electrical envelope solitons can be created and propagated. This work presents a good analytical approach of investigating the propagation of solitary waves through a microtubule modeled by a nonlinear RLC transmission line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.