Abstract

In this paper, we show a sufficient condition for an operational variant of the minimum mean squared error estimator (simply, the minimum MSE estimator) to dominate the ordinary least squares (OLS) estimator. It is also shown numerically that the minimum MSE estimator dominates the OLS estimator if the number of regression coefficients is larger than or equal to three, even if the sufficient condition is not satisfied. When the number of regression coefficients is smaller than three, our numerical results show that the gain in MSE of using the minimum MSE estimator is larger than the loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.