Abstract
An exact size-dependent elasticity solution based on surface energy theory is used to investigate the free radial vibration behavior of a nanoscale sphere. The Gurtin-Murdoch surface elasticity model is employed to incorporate surface stress terms into pertinent boundary conditions. This leads to frequency equations involving spherical Bessel functions. Extensive numerical calculations have been carried out to illustrate the size effect of the nano-sphere on the first and second dimensionless breathing natural frequencies. The numerical results describe the imperative influence of surface energy and radii ratio on the vibrational characteristic frequency of the nano-sphere. In particular, the surface energy is much more important when the inner radius is smaller than 50 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Acoustics and Vibration
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.