Abstract
We present an exact simulation algorithm for the stationary distribution of the customer delay D for first-in–first-out (FIFO) M/G/c queues in which ρ=λ/μ<1. We assume that the service time distribution G(x)=P(S≤x),x≥0 (with mean 0<E(S)=1/μ<∞), and its corresponding equilibrium distribution Ge(x)=μ∫0x P(S>y)dy are such that samples of them can be simulated. We further assume that G has a finite second moment. Our method involves the general method of dominated coupling from the past (DCFTP) and we use the single-server M/G/1 queue operating under the processor sharing discipline as an upper bound. Our algorithm yields the stationary distribution of the entire Kiefer–Wolfowitz workload process, the first coordinate of which is D. Extensions of the method to handle simulating generalized Jackson networks in stationarity are also remarked upon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.