Abstract

We consider the relaxation (noise-free) statistics of the one-point height H=h(x=0,t), where h(x,t) is the evolving height of a one-dimensional Kardar-Parisi-Zhang (KPZ) interface, starting from a Brownian (random) initial condition. We find that, at short times, the distribution of H takes the same scaling form -lnP(H,t)=S(H)/sqrt[t] as the distribution of H for the KPZ interface driven by noise, and we find the exact large-deviation function S(H) analytically. At a critical value H=H_{c}, the second derivative of S(H) jumps, signaling a dynamical phase transition (DPT). Furthermore, we calculate exactly the most likely history of the interface that leads to a given H, and show that the DPT is associated with spontaneous breaking of the mirror symmetry x↔-x of the interface. In turn, we find that this symmetry breaking is a consequence of the nonconvexity of a large-deviation function that is closely related to S(H), and describes a similar problem but in half space. Moreover, the critical point H_{c} is related to the inflection point of the large-deviation function of the half-space problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.