Abstract

Exact configuration-mixing calculations have been done for ${\mathrm{Ni}}^{58}$ and ${\mathrm{Ni}}^{60}$, which have two and four neutrons, respectively, in unfilled shell-model orbitals. Several different types of effective potentials have been used; they are: (1) the surface-delta interaction, (2) Serber exchange, (3) a potential similar to the Rosenfeld mixture, (4) an approximate reaction matrix calculated with the Hamada-Johnston two-nucleon potential, and (5) Tabakin's nonlocal separable two-nucleon potential. These results are compared with those obtained by using the two-body matrix elements given by Cohen et al. (EIC) and by Auerbach (EIA). The overlap of the BCS projected wave function with the exact shell-model ground-state wave function is calculated. The odd-even mass difference obtained from pairing theory using these potentials is compared with the experimental values. It is found that the first three potentials give nearly the same quantitative results as that calculated with EIC and EIA, while the Hamada-Johnston and Tabakin potentials are rather weak.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.