Abstract

We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories C' -> C -> C'' (such that C' is finite) in terms of normal faithful Hopf monads on C'' and also, in terms of self-trivializing commutative algebras in the center of C. More generally, we show that, given any dominant tensor functor C -> D admitting an exact (right or left) adjoint there exists a canonical commutative algebra A in the center of C such that F is tensor equivalent to the free module functor C -> mod_C A, where mod_C A denotes the category of A-modules in C endowed with a monoidal structure defined using the half-braiding of A. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.