Abstract
We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature and can be checked in polynomial time. We then extend our analysis from diagonal QCQPs to general QCQPs, i.e., ones with no particular structure. By reformulating a general QCQP into diagonal form, we establish new, polynomial-time-checkable sufficient conditions for the semidefinite relaxations of general QCQPs to be exact. Finally, these ideas are extended to show that a class of random general QCQPs has exact semidefinite relaxations with high probability as long as the number of constraints grows no faster than a fixed polynomial in the number of variables. To the best of our knowledge, this is the first result establishing the exactness of the semidefinite relaxation for random general QCQPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.