Abstract
Exact plane-symmetric solutions of the spinor-field equation with zero mass parameter and nonlinear term that depends arbitrarily on the S2−P2 invariant are derived with consideration of an intrinsic gravitational field. The existence of regular solutions with localized energy density among the solutions obtained is investigated. Equations with powerlaw and polynomial nonlinearity types are examined in detail. For the power-law nonlinearity, when the nonlinear term entering into the Lagrangian has the form LN=γIn, where γ is the nonlinearity parameter and n=const, it is shown that the initial system of Einstein and spinor-field equations has regular solutions with localized energy density only under the conditions λ=−Λ2 1. In this case, the examined field configuration posesses a negative energy. In the case of polynomial nonlinearity, regular solutions with localized energy density T 0 0 (x), positive energy $$E_f = \int\limits_{ - \infty }^{ + \infty } {T_0^0 } \sqrt { - ^3 g} dx$$ (upon integration over y and z between finite limits), and an everywhere regular metric that transforms into a two-dimensional space-time metric at spatial infinity are obtained. It is shown that the initial nonlinear spinor-field equations in two-dimensional space-time have no solutions with localized energy density. Thus, it is established that the intrinsic gravitational field plays a regularizing role in the frmation of regular localized solutions to the examined nonlinear spinor-field equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.