Abstract
Genetic Programming (GP) homologous crossovers are a group of operators, including GP one-point crossover and GP uniform crossover, where the offspring are created preserving the position of the genetic material taken from the parents. In this paper we present an exact schema theory for GP and variable-length Genetic Algorithms (GAs) which is applicable to this class of operators. The theory is based on the concepts of GP crossover masks and GP recombination distributions that are generalisations of the corresponding notions used in GA theory and in population genetics, as well as the notions of hyperschema and node reference systems, which are specifically required when dealing with variable size representations. In this paper we also present a Markov chain model for GP and variable-length GAs with homologous crossover. We obtain this result by using the core of Vose's model for GAs in conjunction with the GP schema theory just described. The model is then specialised for the case of GP operating on 0/1 trees: a tree-like generalisation of the concept of binary string. For these, symmetries exist that can be exploited to obtain further simplifications. In the absence of mutation, the Markov chain model presented here generalises Vose's GA model to GP and variable-length GAs. Likewise, our schema theory generalises and refines a variety of previous results in GP and GA theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.