Abstract

In this paper, firstly we specialise the exact GP schema theorem for one-point crossover to the case of linear structures of variable length, for example binary strings or programs with arity-1 primitives only. Secondly, we extend this to an exact schema theorem for GP with standard crossover applicable to the case of linear structures. Then we study, both mathematically and numerically, the schema equations and their fixed points for infinite populations for both a constant and a length-related fitness function. This allows us to characterise the bias induced by standard crossover. This is very peculiar. In the case of a constant fitness function, at the fixed-point, structures of any length are present with non-zero probability. However, shorter structures are sampled exponentially much more frequently than longer ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.