Abstract
We obtain the exact solution of the one-loop mode-coupling equations for the dynamical structure function in the framework of non-linear fluctuating hydrodynamics in one space dimension for the strictly hyperbolic case where all characteristic velocities are different. All solutions are characterized by dynamical exponents which are Kepler ratios of consecutive Fibonacci numbers, which includes the golden mean as a limiting case. The scaling form of all higher Fibonacci modes are asymmetric Lévy-distributions. Thus a hierarchy of new dynamical universality classes is established. We also compute the precise numerical value of the Prähofer–Spohn scaling constant to which scaling functions obtained from mode coupling theory are sensitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.