Abstract

The equilibrium conformation of a polymer molecule in an external field is often used in field theories to calculate macroscopic polymer properties of melts and solutions. We use a mathematical method called a Brownian bridge to exactly sample continuous polymer chains to end in a given state. We show that one can systematically develop such processes to sample specific polymer topologies, to confine polymers in a given geometry for its entire path, to efficiently generate high-probability conformations by excluding small Boltzmann weights, or to simulate rare events in a rugged energy landscape. This formalism can improve the polymer sampling efficiency significantly compared to traditional methods (e.g., Monte Carlo or Rosenbluth).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call